
 1

*XLGH�WR�FUHDWH�RU�DGDSW�FROXPQ�GRPLQDWH�SK\VLFDO�SDUDPHWHUL]DWLRQ�

LQ�%5$06��%UD]LOLDQ�5$06��

Álvaro L. Fazenda; Jairo Panetta

INPE/CPTEC

Saulo Freitas; Pedro L. Silva Dias

USP/IAG

RAMS memory allocation mechanism has dramatically improved from RAMS

version 4.X to RAMS version 5.0. A software modernization process replaced the old

and faithful “A” array by a series of data types that implement some level of object

orientation, allowing state-of-the-art dynamic memory allocation and deallocation.

 This new software structure poses a problem for RAMS contributors, which face

an unfamiliar set of commands. This document tries to alleviate the problem by

describing the new software structure and applying it on a procedure to insert physical

modules in RAMS 5.X. The insertion procedure is limited to modules that operate over

a column of the atmosphere at a time (that is, no horizontal interaction is allowed). A

case study, the insertion of Shallow Cumulus Parameterization, is presented. This

physical module was moved, into RAMS 5.0, from its original integration at RAMS 4.3,

where the “A” array was used.

 We describe the insertion procedure at BRAMS 1.0, which is a joint project of

ATMET, IME/USP, IAG/USP and CPTEC, aimed to produce a version of RAMS

tailored to the tropics. This first version (BRAMS 1.0) is just RAMS 5.0 with the

inclusion of modeling of physical phenomena such as Shallow Cumulus, improvements

in software quality (leading to binary reproducibility and higher portability), a higher

resolution vegetation data file, etc. The insertion procedure applies, without

modification, to RAMS 5.0.

 To include new procedures or parameterizations in BRAMS, a decision

procedure should be followed:

1. If the new procedure uses only existent fields and local (to the procedure) scalar

storage, it suffices to insert the new subroutine call at the appropriated point at

routine WLPHVWHS�

 2

2. On the other hand, if the new procedure requires timestep-independent local

storage (as scratch space, for example), than the local storage can be acquired as

Fortran 90 DXWRPDWLF (or DOORFDWDEOH) arrays or re-using the scratch arrays

structure of BRAMS;

3. But if the new procedure requires history-carrying storage (such as new

meteorological variables), we strongly recommend the use of a structure similar

to the one presented at BRAMS. This structure and organization are depicted in

the sections bellow.

 This document is organized in nine sections. Section 1 introduces the concept of

a data type in BRAMS and lists the default data types. Section 2 shows how the default

data types manage storage for a single grid. Section 3 extends this concept to multiple

grids. Section 4 shows how VTABLE information is included for these data types.

Section 5 presents the standard structure of a data type definition file, summarizing the

material of all previous sections. Section 6 shows the sequence of calls to allocate and

return default data.

The material of sections 1-6 is used, in section 7, to insert the Shallow Cumulus

data type in BRAMS. Section 8 describes how to insert the call to Shallow Cumulus at

WLPHVWHS, and section 9 state some conclusions and remarks.

���'DWD�7\SHV�LQ�%5$06�����

 BRAMS 1.0 have a new way of allocating memory to fields. Previously, fields

were allocated as sections of the “A” array. The dedicated section was accessible by

pointing to its first position. Currently, fields are components of a DATA TYPE,

dynamically allocated at initialization.

 There are 14 DATA TYPES in BRAMS 1.0 (12 in RAMS 5.0). Each data type

contains all fields required to represent a certain theme, for a certain grid. The structures

are all located at the ./BRAMS/src/rams/5.0/modules directory, all coded as Fortran-90

MODULES. They are:

��Basic data (DATA TYPE EDVLFBYDUV at file PHPBEDVLF�I��)

o 3D arrays: up, uc, vp, vc, wp, wc, pp, pc, rv, theta, thp, rtp, pi0, th0, dn0,

dn0u, dn0v

o 2D arrays: fcoru, fcorv, cputime

 3

��Standard cumulus parameterization data (DATA TYPE FXSDUPBYDUV at file

PHPBFXSDUP�I��)

o 3D arrays: thsrc, rtsrc

o 2D arrays: aconpr,conprr

��Vegetation and Soil (“Leaf”) data (DATA TYPE OHDIBYDUV at file PHPBOHDI�I��)

o 4D arrays: soil_water, soil_energy, soil_text; sfcwater_mass,

sfcwater_energy, sfcwater_depth

o 3D arrays: ustar,tstar,rstar, veg_fracarea,veg_ lai,veg_rough, veg_height,

veg_albedo,veg_tai, patch_area, patch_rough, patch_wetind, leaf_class,

soil_rough, sfcwater_nlev, stom_resist, ground_rsat,ground_rvap,

veg_water, veg_temp, can_rvap, can_temp, veg_ndvip, veg_ndvic,

veg_ndvif

o 2D arrays: snow_mass, snow_depth, seatp,seatf

��Microphysics data (DATA TYPE PLFURBYDUV at file PHPBPLFUR�I��)

o 3D arrays: rcp, rrp, rpp, rsp, rap, rgp, rhp, ccp, crp, cpp, csp, cap, cgp,

chp, cccnp, cifnp, q2, q6, q7

o 2D arrays: accpr, accpp, accps, accpa, accpg, accph, pcprr, pcprp, pcprs,

pcpra, pcprg, pcprh, pcpg, qpcpg, dpcpg

��Radiation data (DATA TYPE UDGLDWHBYDUV at file PHPBUDGLDWH�I��)

o 3D array: fthrd

o 2D arrays: rshort, rlong, rlongup, albedt, cosz

��Turbulent phenomena data (DATA TYPE WXUEBYDUV at file PHPBWXUE�I��)

o 3D arrays: tkep, epsp, hkm, vkm, vkh

o 2D arrays: sflux_u, sflux_v, sflux_w, sflux_t, sflux_r

��General variable data (DATA TYPE YDULQLWBYDUV at file PHPBYDULQLW�I��)

o 3D arrays: varup, varvp, varpp, vartp, varrp, varuf, varvf, varpf, vartf,

varrf, varwts

��Grid data (DATA TYPE JULGBYDUV at file PHPBJULG�I��)

o 3D arrays: aru, arv, arw, volu, volv, volw, volt

o 2D arrays: topt, topu, topv, topm, topma, topta, rtgt, rtgu, rtgv, rtgm,

f13t, f13u, f13v, f13m, f23t, f23u, f23v, f23m, dxt, dxu, dxv, dxm, dyt,

dyu, dyv, dym, fmapt, fmapu, fmapv, mapm, fmapti, fmapui, fmapvi,

fmapmi, glat, glon, topzo; lpu, lpv, lpw

 4

��Scalar variables and tendencies data (DATA TYPE VFDODUBYDUV at file

PHPBVFDODU�I��)

o 3D array: sclp

o 2D array: drydep

o 1D array: sclt

o Scalars: n1, n2, n3, naddsc, nsc

��Tendencies data (DATA TYPE WHQGBYDUV at file PHPBWHQG�I��)

o 1D array: ut, vt, wt, pt, tht, rtt, rct, rrt, rpt, rst, rat, rgt, rht, cct, crt, cpt,

cst, cat, cgt, cht, cccnt, cifnt, tket, epst

��Scratch data (DATA TYPE VFUDWFKBYDUV at file PHPBVFUDWFK�I��)

o 1D arrays: scr1, scr2, vt3da, vt3db, vt3dc, vt3dd, vt3de, vt3df, vt3dg,

vt3dh, vt3di, vt3dj, vt3dk, vt3dl, vt3dm, vt3dn, vt3do, vt3dp, vt2da,

vt2db, vt2dc, vt2dd, vt2de, vt2df (to save data related to 3D arrays);

vt2da, vt2db, vt2dc, vt2dd, vt2de, vt2df (to save data related to 2D

arrays)

��Nested boundary interpolation data (DATA TYPE QHVWBERXQGV�at file

PHPBQHVWE�I��)

o 4D arrays: bsx, bsy, bsz

o 3D arrays: bux, buy, buz, bvx, bvy, bvz, bwx, bwy, bwz, bpx, bpy, bpz

Remaining data continues to be allocated statically and communicated by

COMMONs. Take, for example, file /BRAMS/src/rams/5.0/include/rcommons.h. It

contains declaration of arrays such as YFWU�, WQXGFHQW and QQTSDUP, that are accessible

to RAMS modules through ,1&/8'(�
UFRPPRQV�K
. This data arrangement will be

used for a while. However, the DATA TYPE method is more appropriated for history

carying fields (that is, variables that should keep their values among type stetps).

��±�'\QDPLF�$OORFDWLRQ�RI�D�6LQJOH�*ULG�

Take any of the above DATA TYPES. For example, EDVLFBYDUV��The data type

declaration at file /BRAMS/src/rams/5.0/modules/mem_basic.f90 is:

 5

 TYPE basic_vars

 ! Variables to be dimensioned by (nzp,nxp,nyp)
 REAL, POINTER, DIMENSION(:,:,:) :: &
 up,uc,vp,vc,wp,wc,pp,pc &
 ,rv,theta,thp,rtp &
 ,pi0,th0,dn0,dn0u,dn0v

 ! Variables to be dimensioned by (nxp,nyp)
 REAL, POINTER, DIMENSION(:,:) :: &
 fcoru,fcorv,cputime

 END TYPE basic_vars

Observe that each variable of type EDVLFBYDUV has 17 three-dimensional fields

and 3 two dimensional fields. For example, the declaration

 TYPE (basic_vars) :: example

states that variable H[DPSOH is of type EDVLFBYDUV� Consequently, it contains all 20 fields.

To access one field (say, IFRUX) it suffices to write H[DPSOH�IFRUX. Element (i,j) of this

array is accessed by H[DPSOH�IFRUX�L�M��

Declaring a variable of type EDVLFBYDUV do not reserve memory for its allocatable

components (the fields). An explicit memory allocation command �$//2&$7(� should

be used for each component.

Each DATA TYPE in BRAMS has an initialization routine that allocates all

allocatable components of a variable of that type. Taking again EDVLFBYDUV� as an

example, the corresponding allocation procedure is

 SUBROUTINE alloc_basic(basic,n1,n2,n3)

 IMPLICIT NONE
 TYPE (basic_vars) :: basic
 INTEGER, INTENT(in) :: n1,n2,n3

 ALLOCATE (basic%up(n1,n2,n3))
 ALLOCATE (basic%uc(n1,n2,n3))
 ALLOCATE (basic%vp(n1,n2,n3))
 ALLOCATE (basic%vc(n1,n2,n3))
 ...
 ALLOCATE (basic%fcoru(n2,n3))
 ALLOCATE (basic%fcorv(n2,n3))
 ALLOCATE (basic%cputime(n2,n3))

 6

 RETURN
 END SUBROUTINE alloc_basic

Assume that variable H[DPSOH represents a grid of size (10, 50, 8). Then, the

invocation

 CALL alloc_basic(example, 10, 50, 8)

allocates all 20 fields with the desired size.

��±�$OORFDWLQJ�0XOWLSOH�*ULGV�

A scalar variable like H[DPSOH suffices to allocate a single grid. To allocate

multiple grids, either one creates a new variable name for each grid (which is, at least,

inconvenient) or one creates an array of elements, indexed by grid number.

Consequently, the declaration

 TYPE (basic_vars), ALLOCATABLE :: basic_g(:)

defines EDVLFBJ as an array of EDVLFBYDUV��representing multiple grids. The array has to

be allocated (by an $//2&$7(�statement) and all fields of each array entry also have to

be allocated (by invoking DOORFBEDVLF�EDVLFBJ�L���������).

The actual declaration of the array that represents all grids is (see file

PHPBEDVLF�I��):

 TYPE (basic_vars), ALLOCATABLE :: basic_g(:), basicm_g(:)

While EDVLFBJ contains the actual fields, EDVLFPBJ contains temporal means, if

required.

Besides the types and basic grid variables declarations, the file also contains

procedures to dynamically allocate the components of each variable of the type (the

DOORFBEDVLF routine) and procedures to deallocate and nullify all components:

 SUBROUTINE nullify_basic(basic)

 IMPLICIT NONE

 7

 TYPE (basic_vars) :: basic

 IF (ASSOCIATED(basic%up)) NULLIFY (basic%up)
 IF (ASSOCIATED(basic%uc)) NULLIFY (basic%uc)
 IF (ASSOCIATED(basic%vp)) NULLIFY (basic%vp)
 IF (ASSOCIATED(basic%vc)) NULLIFY (basic%vc)
 ...
 IF (ASSOCIATED(basic%cputime)) NULLIFY (basic%cputime)

 RETURN
 END SUBROUTINE nullify_basic

 SUBROUTINE dealloc_basic(basic)

 IMPLICIT NONE
 TYPE (basic_vars) :: basic

 IF (ASSOCIATED(basic%up)) DEALLOCATE (basic%up)
 IF (ASSOCIATED(basic%uc)) DEALLOCATE (basic%uc)
 IF (ASSOCIATED(basic%vp)) DEALLOCATE (basic%vp)
 IF (ASSOCIATED(basic%vc)) DEALLOCATE (basic%vc)
 ...
 IF (ASSOCIATED(basic%cputime))DEALLOCATE(basic%cputime)

 RETURN
 END SUBROUTINE dealloc_basic

��±�6XEVWLWXWLQJ�97$%/(6�

Another novelty of BRAMS (and RAMS 5.0) is the replacement of the

VTABLE file by an array. The software structure is identical to the one depicted above:

a data type for each entry of an array. A subroutine called ILOOWDEBEDVLF fills the array,

invoking YWDEOHV� to fill one entry of the array. These are all included in the PHPBEDVLF

file; it contains, for example:

 SUBROUTINE filltab_basic(basic,basicm,imean,n1,n2,n3,ng)

 USE var_tables

 IMPLICIT NONE
 TYPE (basic_vars) :: basic,basicm
 INTEGER, INTENT(in) :: imean,n1,n2,n3,ng
 INTEGER :: npts
 REAL, POINTER :: var,varm

 ! Fill pointers to arrays into variable tables

 8

 npts=n1*n2*n3

 IF (ASSOCIATED(basic%up)) &
 CALL vtables2 (basic%up(1,1,1),basicm%up(1,1,1) &
 ,ng, npts, imean, &
 ’UP :3:hist:anal:mpti:mpt3:mpt2’)
 IF (ASSOCIATED(basic%vp)) &
 CALL vtables2 (basic%vp(1,1,1),basicm%vp(1,1,1) &
 ,ng, npts, imean, &
 ’VP :3:hist:anal:mpti:mpt3:mpt2’)
 IF (ASSOCIATED(basic%wp)) &
 CALL vtables2 (basic%wp(1,1,1),basicm%wp(1,1,1) &
 ,ng, npts, imean, &
 ’WP :3:hist:anal:mpti:mpt3:mpt2’)
 ...
 npts=n2*n3
 IF (ASSOCIATED(basic%fcoru)) &
 CALL vtables2(basic%fcoru(1,1),basicm%fcoru(1,1) &
 ,ng, npts, imean, &
 ’FCORU :2:mpti’)
 IF (ASSOCIATED(basic%fcorv)) &
 CALL vtables2(basic%fcorv(1,1),basicm%fcorv(1,1) &
 ,ng, npts, imean, &
 ’FCORV :2:mpti’)
 ...
 RETURN
 END SUBROUTINE filltab_basic

that fills all entries of the VTABLES array. The YWDEOHV� subroutine fills a single table

entry with a string like:

“UP :3:hist:anal:mpti:mpt3:mpt2”

that has the same meaning than one entry of the old VTABLE file. Semantics of the

sub-strings is:

Tables:
#--------
hist - write to history file
anal - write to analysis file
lite - write to analysis "lite" file
Parallel tables:
#-----------------
mpti - initialization, full sub-domain master to node
mpt1 - long timestep, subdomain boundaries node to node
mpt2 - small timestep, subdomain boundaries node to node
mpt3 - full sub-domain node to master for output
description

 9

1 2 3+
#---
UP : 3:hist:anal:mpti:mpt3:mpt2
1. variable name
2. dimensionality (3-> 3d; 2-> 2d; s->soil)
3. + list of tables

 The VTABLES mechanism provides an automatic input/output mechanism that

can recover or save information in history or analyses files, as well as distinguished

parallel communication.

 Of course, the above ILOOWDEBEDVLF� routine fills the VTABLES array just for

variables of type EDVLFBYDU. That is the reason why it is contained at file PHPBEDVLF.

Each file that contains a new data type has to contain a similar routine.

�±�)LQDO�'7�7<3(�ILOH�VWUXFWXUH�

 All 12 data types are contained in files with the same strucure: a data type

declaration followed by procedures to:

1. Allocate components of a variable of that data type

2. Deallocate (and nullify) components of the same variable

3. Fill the VTABLES entry for variables of the same type

How important is to know (and maintain) this file structure? Supose the insertion

of a new physical parametrization module in BRAMS. If this new module requires

history carying variables, then a new data type, allocation, deallocation, nullify and

VTABLES procedures ought to be created, specifically for variables of the new data

type.

In other words, it is central (to the health of BRAMS) to keep this structure. But

that is not enough.

�±�*OREDO�0HPRU\�$OORFDWLRQ�

There is a single procedure in BRAMS that performs all memory allocation and

initialization: that is UDPVBPHPBDOORF at file BRAMS/src/rams/5.0/model/alloc.f90. It

allocates data for all grids, nullify components, call DOORFBEDVLF to allocate component

arrays for each grid (with the appropriated dimensions) and fill the information tab

(ILOOWDEBEDVLF) for the just allocated arrays:

 10

 ...
 ! Allocate Basic variables data type
 PRINT*,’start basic alloc’
 ALLOCATE(basic_g(ngrids),basicm_g(ngrids))
 DO ng=1,ngrids
 CALL nullify_basic(basic_g(ng))
 CALL nullify_basic(basicm_g(ng))
 CALL alloc_basic(basic_g(ng), nmzp(ng), nmxp(ng), &
 nmyp(ng), ng)
 IF (imean == 1) THEN
 CALL alloc_basic(basicm_g(ng), nmzp(ng), &
 nmxp(ng), nmyp(ng), ng)
 ELSEIF (imean == 0) THEN
 CALL alloc_basic(basicm_g(ng),1,1,1,ng)
 ENDIF

 CALL filltab_basic(basic_g(ng),basicm_g(ng),imean &
 ,nmzp(ng),nmxp(ng),nmyp(ng),ng)
 ENDDO
 ...

But it does that not only for variables of type EDVLFBYDUV; it does for all global

variables of all types. Consequently, if a new type is to be created (maintaining the file

structure just shown) then the above code has to be replicated for the variables of the

just-created type. That is the case for the shallow cumulus parameterization.

��±�'\QDPLF�$OORFDWLRQ�RI�QHZ�GDWD�IRU�6KDOORZ�&XPXOXV�SDUDPHWHUL]DWLRQ�

Since the Shallow Cumulus parameterization requires history-carrying fields, a

new MODULE called PHPBVKFX was created, similar to the previous one, to insert three

new arrays:

MODULE mem_shcu
 TYPE shcu_vars

 ! Variables to be dimensioned by (nzp,nxp,nyp)
 REAL, POINTER, DIMENSION(:,:,:) :: &
 THSRCSH, RTSRCSH

 ! Variables to be dimensioned by (nxp,nyp)
 REAL, POINTER, DIMENSION(:,:) :: &
 SHMF

 11

 END TYPE shcu_vars

 TYPE (shcu_vars), ALLOCATABLE :: shcu_g(:), shcum_g(:)

CONTAINS

 SUBROUTINE alloc_shcu(shcu,n1,n2,n3,ng)
 IMPLICIT NONE
 TYPE (shcu_vars) :: shcu
 INTEGER, INTENT(in) :: n1,n2,n3,ng
 ...
 END SUBROUTINE alloc_shcu

 SUBROUTINE nullify_shcu(shcu)
 IMPLICIT NONE
 TYPE (shcu_vars) :: shcu
 ...
 END SUBROUTINE nullify_shcu

 SUBROUTINE dealloc_shcu(shcu)
 IMPLICIT NONE
 TYPE (shcu_vars) :: shcu
 ...
 END SUBROUTINE dealloc_shcu

 SUBROUTINE filltab_shcu(shcu,shcum,imean,n1,n2,n3,ng)
 USE var_tables
 IMPLICIT NONE
 TYPE (shcu_vars) :: shcu, shcum
 INTEGER, INTENT(in) :: imean,n1,n2,n3,ng
 ...
 END SUBROUTINE filltab_shcu
END MODULE mem_shcu

Since a new module has been created, it is necessary to invoke its memory

allocation and initialization routines at UDPVBPHPBDOORF, just like in section 6 for

EDVLFBYDUV (the user need also to remember to put the properly 86(statement for

Shallow Cumulus in the begging of UDPVBPHPBDOORF routine):

SUBROUTINE rams_mem_alloc(proc_type)

 USE mem_all
 USE node_mod

��86(�PHPBVKFX�����QHHGHG�IRU�6KDOORZ�&XPXOXV��

 IMPLICIT NONE

 12

 ...

 ! Allocate nested boundary interpolation arrays. All
 ! grids will be allocated.

 PRINT*,’start nestb alloc’
 IF (proc_type == 0 .OR. proc_type == 2) THEN
 DO ng=1,ngrids
 IF(nxtnest(ng) == 0) THEN
 CALL alloc_nestb(ng,1,1,1)
 ELSE
 CALL alloc_nestb(ng,nnxp(ng),nnyp(ng),nnzp(ng))
 ENDIF
 ENDDO
 ENDIF

���
����$OORFDWH�GDWD�IRU�6KDOORZ�&XPXOXV�
�
��'2�QJ ���QJULGV�
�����,)��116+&8�QJ�� ����$OORFB6K&XB)ODJ� ���
��(1''2�
��,)��$OORFB6K&XB)ODJ� ����7+(1�
�����35,17�
VWDUW�6K&X�DOORF
�
�����$//2&$7(�VKFXBJ�QJULGV��VKFXPBJ�QJULGV���
�����'2�QJ ��QJULGV�
��������&$//�QXOOLI\BVKFX�VKFXBJ�QJ���
��������&$//�QXOOLI\BVKFX�VKFXPBJ�QJ���
��������&$//�DOORFBVKFX�VKFXBJ�QJ��QP]S�QJ����	�
������������������������QP[S�QJ��QP\S�QJ��QJ���
��������,)��LPHDQ� ����7+(1���
�����������&$//�DOORFBVKFX�VKFXPBJ�QJ��QP]S�QJ����	�
���������������������������QP[S�QJ��QP\S�QJ��QJ��
��������(/6(,)��LPHDQ� ����7+(1�
�����������&$//�DOORFBVKFX�VKFXPBJ�QJ��������QJ��
��������(1',)�
�
��������&$//�ILOOWDEBVKFX�VKFXBJ�QJ��VKFXPBJ�QJ��LPHDQ���	�
��������������������������QP]S�QJ��QP[S�QJ��QP\S�QJ��QJ���
�����(1''2�
��(1',)�

 ! Set "Lite" variable flags according to namelist input
 ! LITE_VARS.

 IF (proc_type == 0 .OR. proc_type == 2) THEN
 CALL lite_varset()
 ENDIF

 RETURN
END SUBROUTINE rams_mem_alloc

 13

��±�&RPSXWLQJ�WKH�VKDOORZ�FXPXOXV�SDUDPHWHUL]DWLRQ�

The final step is to include the invocation of the new parametrization routines at

WLPHVWHS (at file /BRAMS/src/rams/5.0/model/rtimh.f90). Take, for example, the

Shallow Cumulus Parametrization invocation:

 ...
 ! Get the overlap region between parallel nodes
 !---
 t1=cputime(w1)
 IF(ipara == 1) THEN
 CALL node_getlbc()
 IF (ngrid == 1) CALL node_getcyclic(1)
 ENDIF
 CALL acctimes(’accu’,13,’GETlbc’,t1,w1)

 ! Sub-grid diffusion terms
 !--
 t1=cputime(w1)
 CALL diffuse ()
 CALL acctimes(’accu’,12,’DIFFUSE’,t1,w1)

 ! Velocity advection
 !--
 t1=cputime(w1)
 CALL ADVECTc(’T’,mzp,mxp,myp,ia,iz,ja,jz,izu,jzv,mynum)
 CALL acctimes(’accu’,15,’ADVECTs’,t1,w1)

 �VUI��
���VUI���6KDOORZ��FXPXOXV�SDUDPHWHUL]DWLRQ��
��W� FSXWLPH�Z���
��,)�16+&8�(4����&$//�6+&83$������6KDOORZ�&XPXOXV�SDUDP��
��&$//�DFFWLPHV�
DFFX
����
6+&83$50
�W��Z���
���VUI���

 ! Update scalars
 !--
 t1=cputime(w1)
 CALL PREDTR()
 CALL acctimes(’accu’,16,’PREDTR’,t1,w1)
 ...

File BRAMS/src/rams/5.0/braz_modules/shallow_cum/rshcupar.f90 contains

subroutine 6+&83$��, that uses previously allocated data for shallow cumulus and

other required data present owned by others MODULEs:

 14

SUBROUTINE SHCUPA()

 ! USE Modules for 5.0
 USE mem_basic
 USE mem_micro
 USE mem_grid
 USE mem_turb
 USE mem_tend
 USE node_mod, &

ONLY : MXP, MYP, MZP, IA, IZ, JA, JZ, I0, J0

 USE mem_shcu ! USE Module for Shallow Cumulus
 IMPLICIT NONE
 INCLUDE ’rcommons.h’
 ...

The QRGHBPRG MODULE contains the current grid dimensions at one parallel

node (specified at the 86(�21/< statement above).

��±�&RQFOXVLRQV�DQG�5HPDUNV�

RAMS is going through a continuous software modernization process, triggered

by ANSI/OSI Fortran enhancements. It should result a more robust and reliable product

(when it comes to software), without loosing processing speed. BRAMS is in pace with

this process.

This document is designed to help users insert new procedures in BRAMS. But

it does not touch other software engineering issues that should be obeyed. Among them,

we strongly recommend the declaration of all variables - experience has shown the

importance of using IMPLICIT NONE.

Another important point is that dynamic memory allocation has a strong impact

on non-standard practices related to local variables initialization and SAVEs. Users tend

to rely on automatic initialization (to zero) of all requested memory; that is, they do not

explicitly initialize all local variables. Users also rely on static placement of variables

into memory – which means that the value of a local variable will be kept among

procedure calls. Although that is absolutely false in Fortran 77 standard-compliant

programs (otherwise the SAVE command will be useless), Fortran 77 processors make

this true in practice.

 15

Both practices do not hold for dynamically allocated memory. Due to that, we

strongly recommend users to initialize all local variables, as well as use the SAVE

attribute on local variables that should keep their value among procedure invocations.

